Organo-f-element thermochemistry. Absolute uranium–ligand bond disruption enthalpies of $[UL_3-SX]$ complexes $(L = C_5H_4^{t}Bu, C_5H_4SiMe_3 \text{ or } C_9H_6SiMe_3 \text{ and } X = Et \text{ or }^{t}Bu)$

X. Jemine and J. Goffart

Laboratory of Analytical Chemistry and Radiochemistry, University of Liège, Sart Tilman, B4000 Liège (Belgium)

P.C. Leverd and M. Ephritikhine

Service de Chimie Moléculaire, DSM, DRECAM, CNRS URA 331, CEA / Saclay, 91191, Gif sur Yvette (France) (Received July 2, 1993)

Abstract

The absolute uranium-ligand bond disruption enthalpies for the series of compounds $U(Cp')_3SEt$, $U(Cp^*)_3SX$ (X = Et or 'Bu) and $U(Ind^*)_3SEt$ [Cp' = C₅H₄'Bu, Cp* = C₅H₄SiMe₃ and Ind* = C₉H₆SiMe₃] have been measured by an oxidative addition process involving batch-titration solution calorimetry in toluene. The derived values are as follows (kJ mol⁻¹): 252 ± 8 (Cp', Et); 266 ± 9 (Cp*, Et); 158 ± 8 (Cp*, 'Bu) and 158 ± 8 (Ind*, Et).

Key words: Uranium; Calorimetry

1. Introduction

The importance of sulphur in industry (vulcanisation of rubber [1]), in agriculture, in biology (protein transformations [2]) and in air pollution is well known. Although the breaking of formation of the metalsulphur bond is of paramount importance to our understanding of a considerable number of chemical processes, no absolute thermodynamic data for the actinide-sulphur bond disruption enthalpies have been published. We report here the absolute bond disruption enthalpy [D(U-S)] for $U(Cp')_3SEt$, $U(Cp^*)_3SX$ (X = Et or 'Bu) and $U(Ind^*)_3SEt$.

2. Experimental details

All the organoactinide compounds were handled in Schlenk-type glassware, and solid or solution transfers were performed in a glove box under purified nitrogen

0022-328X/94/\$7.00 SSDI 0022-328X(93)24110-Q or argon. Solvents were purified by standard methods and distilled immediately prior to use.

2.1. Synthesis of $U(Ind^*)_3$

To a tetrahydrofuran solution of 6×10^{-3} mol of UCl₃ was added a solution of 18×10^{-3} mol of Ind^{*}K [3] in a pentane (100 ml)/tetrahydrofuran (15 ml) mixture. The solution was stirred for 5 days, the solvents then removed *in vacuum*, and the brown residue extracted with pentane for 3 days (yield 76%). ¹H NMR (C₆D₆ in ppm from C₆D₅H 7.28 ppm): δ 7.02 (s, 3H); 4.20 (s, 3H); 4.11 (s, 3H); 0.48 (s, 27H); -11.78 (s, 3H); -17.73 (s, 3H); -18.95 (s, 3H). IR: (hexachlorobutadiene, Nujol, polyethylene) 2955m, 2900m, 1245m, 835s, 243s cm⁻¹. Anal. found: C, 53.74; H, 5.95; Si, 9.76; U, 30.71. Calc.: C, 54.06; H, 5.67; Si, 10.53; U, 29.76%.

2.2. Reactions of UL_3 (L = Cp', Cp^* and Ind^*) with XSSX reagents (X = Et and 'Bu)

An NMR tube was charged with UL_3 (ca. 10 mg) and 0.5 molar equivalent of XSSX reagent in toluene

Correspondence to: Professor J. Goffart.

 d_8 (0.4 ml). The solution immediately turned from green to red, and the spectrum showed the quantitative formation of UL₃SX.

As previously reported by Anderson and coworkers [4], triscyclopentadienyl uranium thiolate complexes can also be obtained by oxidation of L_3U with the corresponding thiol. The complete characterisation of these compounds, including the X ray crystal structure of $(C_5H_5)_3USMe$, their reaction and redox properties will be described elsewhere.

2.3. Analytical methods

Proton NMR spectra were recorded on Bruker AM400 (FT, 400.1 MHz) instrument, IR spectra on a Bruker IFS66 spectrophotometer and near-infrared visible (NIR-Vis) spectra on a Perkin-Elmer Lambda 9 spectrophotometer. Elemental analysis was carried out by Dornis and Kolbe, Mikroanalytisches Laboratorium, Mülheim, Germany.

2.4. Titration calorimetry

The isoperibol calorimeter employed in this study, and the general experimental procedure, have been described elsewhere [5]. About 150 mg of the organometallic compound were dissolved under argon in very pure toluene and the solution was placed in the calorimeter. A freshly prepared solution of XSSX in toluene was then added, and the reaction heat measured. The enthalpy of reaction per mole of complex was obtained by the procedure described previously [5].

3. Results and discussion

The "absolute" bond disruption enthalpies [D(U-S)], neglecting solvent effects, possible U-U interaction in $L_3U,...$, were calculated from the oxidative-addition reaction illustrated in eqns. (1-3):

UL₃ (L = Cp', Cp^{*} or Ind^{*}) +
$$\frac{1}{2}$$
 EtSSEt \longrightarrow
UL₃SEt ΔH_{ox} (1)

$$U(Cp^{\star})_3 + \frac{1}{2} ^{t}BuSS^{t}Bu \longrightarrow$$

$$U(Cp^*)_3S^tBu \Delta H_{ox}$$
 (2)

$$D[UL_3-SX] = \frac{1}{2} D[XS-SX] - \Delta H_{ox}$$
(3)

The thermochemical data are presented in Table 1. The values of D[EtS-SEt] and D['BuS-S'Bu] needed for the derivation of D[UL₃-SX] were taken from the literature [2].

The uncertainty in the absolute $D[UL_3-SX]$ values is mainly because of the large uncertainty in the value

TABLE 1. Enthalpies of reaction with XS-SX in toluene (per mole of complex) and the derived bond-disruption enthalpies (kJ mol⁻¹) for uranium complexes (95% confidence)

L	x	$\Delta H_{\rm ox}$	D[XS-SX]	D[UL ₃ -SX]
Cp'	Et	-109.8 ± 2.3	285 ± 16	252 ± 8
Cp*	Et	-123.1 ± 4.0	285 ± 16	266 ± 9
Ind*	Et	-15.8 ± 1.6	285 ± 16	158 ± 8
Ср⁺	'Bu	-15.5 ± 2.3	285 ± 16	158±8

of D[XS-SX]. The disruption enthalpy of the sulphur-sulphur bond is given by the expression:

$$D[XS-SX] = 2 \Delta H_f^0(XS)_g + \Delta H_f^0(XS-SX)_g$$
(4)

However the heat of formation of the XS radical is not known with a high accuracy [2]. It is important to realise that the difference, ΔH_{ox} is not subject to this uncertainty; only the absolute D-values are affected.

It is immediately apparent from the data in Table 1 that U-S bond disruption enthalpies are influenced by the nature of the ligands. In contrast to the value of D[AnL₃-H] (An = Th, U)[•], like that of the D[AnL₃-I] [6,7], the value of D[UL₃-SX] appears to be slightly influenced by the electron-donating ability of the ligands because D[UCp'₃-SEt] and D[UCp^{*}₃-SEt] are respectively 252 ± 8 and 266 ± 9 kJ mol⁻¹. However, the value of D[UL₃-SX] is very much affected by the increase of the size of the L or X groups, and is lowered to 158 ± 8 kJ mol⁻¹ for D[UCp^{*}₃-S^tBu] and D[UInd^{*}₃-SEt].

Since the ΔH_{ox} value for reaction (2, L = Cp^{*}) is about 100 kJ mol⁻¹ less exothermic than the ΔH_{ox} value for reaction (1, L = Cp^{*}), by subtracting this difference from the ΔH_{ox} values obtained for L = Cp['] and L = Ind^{*} in reaction (1), the enthalpy values for the corresponding reactions (2) are given as *ca*. 0 and 100 kJ mol⁻¹, respectively. From this thermochemical finding and from the entropic driving, the synthesis of UL₃SX where L = Cp['] or Ind^{*} from the oxidative-

Fig. 1. Comparison of measured $D[Sm(C_5Me_5)_2-R]_x$ data to those of corresponding $D[U(C_5H_4SiMe_3)_3-R]$ (kJ mol⁻¹).

addition reaction (5) seems to be impossible, and this is in agreement with the experiments.

$$UL_{3} (L = Cp' \text{ or } Ind^{*}) + \frac{1}{2} ^{t}BuSS^{t}Bu \longrightarrow$$
$$UL_{3}S^{t}Bu \quad \Delta H_{ox} \quad (5)$$
$$\Delta H_{ox} \approx 0 \text{ kJ mol}^{-1} (L = Cp')$$

 $\Delta H_{\rm or} \approx 100 \text{ kJ mol}^{-1} (L = \text{Ind}^{\star})$

That 'BuSS'Bu reacts with UCp^{*}₃ but not with UCp'₃ can be explained by the more facile initial coordination of the sulphide reagent to the less electron-rich metallocene UCp^{*}₃; it was previously demonstrated that the latter gave a much less labile adduct with tetrahydrofuran than UCp'₃ [8].

Nolan *et al.* [9] have shown that a linear correlation exists between the D[U(C₅H₄SiMe₃)₃-R] and D[Sm-(C₅Me₅)₂-R]_x values (X = 1 for R = alkyl, I, THF and X = 2 for R = H) (estimated value for Sm(C₅Me₅)₂SEt from Sm(C₅Me₅)₂SⁿPr) for values about 30 kJ mol⁻¹ lower than those for uranium compound (Fig. 1). The values that we have found for R = H [6] and R = SEt confirm the validity of this correlation. It can be predicted that the values of D[U-O] [10], D[U-N] and D[U-P] should be *ca.* 310, 190 and 130 kJ mol⁻¹, respectively.

Acknowledgments

Financial support from the Inter-university Institute for Nuclear Sciences (Brussels) to the Laboratory of Analytical Chemistry and Radiochemistry of Liège is gratefully acknowledged.

References

- 1 J.S. Ball, in *Encyclopaedia of Chemical Technology*, Interscience, Vol. 13, New York, 1954.
- 2 D. Griller, J.A. Martinho Simoes and D.D. Wayner, in C. Chatgilialogu and K.-D. Asmus (eds.), Sulfur-Centered Reactive Intermediates in Chemistry and Biology, Plenum, New York, 1991.
- 3 (a) G.A. Taylor and P.E. Rakita, Org. Magn. Reson., 6 (1974) 644;
 (b) P.E. Rakita and A. Davison, Inorg. Chem., 8 (1969) 1164; (c) L.H. Sommer and N.S. Marans, J. Am. Chem. Soc., 73 (1951) 5135.
- 4 (a) J.G. Brennan, R.A. Andersen and A. Zalkin, *Inorg. Chem.*, 25 (1986) 1756; (b) S.D. Stults, R.A. Andersen and A. Zalkin, *Organometallics*, 9 (1990) 1623.
- 5 S. Bettonville, J. Goffart and J. Fuger, J. Organomet. Chem., 59 (1989) 377.
- 6 X. Jemine, J. Goffart, J.C. Berthet and M. Ephritikhine, J. Chem. Soc. Dalton Trans., (1992) 2439.
- 7 X. Jemine, J. Goffart, M. Ephritikhine and J. Fuger, J. Organomet. Chem., 448 (1993) 95.
- 8 J.C. Berthet, J.F. Le Maréchal, M. Lance, M. Nierlich, J. Vigner and M. Ephritikhine, J. Chem. Soc., Dalton Trans., (1992) 1573.
- 9 S.P. Nolan, D. Stern and T.J. Marks, J. Am. Chem. Soc., 111 (1989) 7844.
- 10 S. Bettonville, J. Goffart and J. Fuger, J. Organomet. Chem., 393 (1990) 205.